Средства разработки приложений

         

Обзор методов моделирования аспектов


Как отмечают авторы [16], в то время как существует поддерживающий АО- концепции язык программирования AspectJ [5], отсутствует реализованный язык моделирования, поддерживающий проектирование AspectJ-программ. Предложениям по разработке подобного языка посвящено большое количество работ, представленных на различных конференциях в 1998-2002 гг.

Подавляющее большинство исследователей предлагают основываться на существующем стандарте UML [2] и применить существующие в нем механизмы расширения графической нотации сущностей и отношений (стереотипы, ограничения, помеченные значения) для описания дополнительных концепций AO-проектирования.

Так, в работе [15] предлагается ввести три новых концепции: группы (для целей классификации гетерогенных и распределенных сущностей), пересекающие отношения (позволяющие программисту определить “точки пересечения” аспекта с функциональной программой), аспектные классы (реализующие расширения программы в точках пересечения). Графически это предполагает использование имеющихся в UML элементов: классов и ассоциаций с добавлением стереотипов “group”, “pointcut”, “aspect”. Для методов аспектного класса вводятся стереотипы “before”, “after”, “around”, описывающие момент их вызова по отношению к вызову “пересекаемых” функций, а также предлагается набор правил определения и интерпретации семантики ролей и кратностей для пересекающих отношений.

В [12] рассматривается выделение аспектов в программной системе. Примеры диаграмм в этой работе похожи на приводимые в [15]: аспект рассматривается как диспетчер взаимодействия двух взаимозависимых классов и других, предоставляющих некоторую функциональность. Но, в отличие от [15], в модель явно вводится понятие “точки пересечения”, которую предлагается моделировать как вариант класса, а не как вариант ассоциации, более подробно рассмотрены “точки соединения” – места взаимодействия с аспектом, прерывания/возобновления выполнения основной программы. “Точки соединения могут быть объединены для построения интерфейса аспекта, также как множество интерфейсов в UML могут быть объединены в форму интерфейса класса”.
Вводится понятие парных (conjugated) точек соединения, в которых происходит вызов методов с одинаковыми сигнатурами, но направления потока управления противоположны (в которых управление передается аспекту и возвращается им).

С. Кларк и Р. Уолкер предлагают свой вариант нотации [8] для описания аспектов средствами UML. Они предлагают использовать параметризируемые пакеты (что само по себе является непредусмотренным расширением UML) со стереотипом “subject”, поскольку в принципе рассматривают аспекты как элементы субъектно-ориентированного проекта. Внутри пакета могут быть размещены диаграммы классов и взаимодействия, что позволяет графически показать поведение программы после связывания. Такой пакет является в терминологии авторов “композиционным шаблоном”. При этом, “параметризируя проектный субъект и обеспечивая механизм для привязки этих параметров к элементам модели в других проектных субъектах, мы можем определить композицию пересекающего поведения с основным проектом способом, допускающим повторное использование”. Предлагаемая семантика (отношение композиции, расширяемое строкой bind) оперирует классами и методами связываемых субъектов.

В [16] авторы рассматривают моделирование “пересекающих эффектов” отдельно в структуре типов и в поведении некоторой системы. Оригинальность их подхода заключается в предложении использовать параметризируемые, помеченные стереотипом “introduction” кооперации для определении свойств (атрибутов, операций) и отношений каждого из “пересечений” аспектных и обычных классов. Параметр кооперации используется для определения правил связывания (фактически – инстанцирования кооперации и ее встраивания в существующую систему классов). Помимо этих коопераций, в аспектных классах вводятся, независимо от методов, элементы со стереотипами “pointcut” и “advice”: “точки пересечения” и “извещения”, определяющие пересечение логики аспекта и программной системы, и вводящие механизм перехвата управления. Предложенная нотация базируется на концепциях языка AspectJ, но является излишне усложненной.



Разработчики UML указывают, что “ На практике для именования класса используют одно или несколько коротких существительных, взятых из словаря моделируемой системы” [2]. Аналогично, в большинстве рассмотренных работ имя аспектного класса является наречием и показывает выполняемую операцию.

Помимо рассмотренных выше четырех работ, предлагающих проработанные, готовые к практическому применению графические нотации, доступно большое количество статей теоретической направленности. Так, в [4] делается попытка формализовать использование средств расширений UML для специфицирования понятий АО-методологии. Для этого используется понятие “профиля” UML – механизма, позволяющего описать правила использования средств расширения языка в некоторой предметной области. Расширяя метамодель UML, авторы определяют набор стереотипов и их приложение к таким элементам метамодели, как класс и ассоциация. Авторы [17] также предлагают расширить метамодель UML для описания аспектных классов и отношений, но основной акцент сделан на предложении основанного на правилах XML языка разметки для описания проектных моделей, в частности, содержащих аспекты. Выгоды его введения обосновываются необходимостью наличия “нейтрального по отношению к приложениям формата” для коммуникации между разработчиками, облегчением повторного использования описаний аспектов, а также их разделением между различными средствами проектирования, связывания, кодогенерации. Комплексным подходом отличается статья известных разработчиков из IBM У. Харрисона, П. Терра и Г. Оссхера [9], в которой они рассматривают способы, какими информация об аспектах может быть отражена на различных диаграммах UML. Здесь же следует упомянуть работы С. Кларк [6,7], в которых она “представляет подход к разработке систем, базирующийся на объектно-ориентированной модели, но расширяющий ее добавлением новых возможностей декомпозиции”. В докладе [10] представлен прототип автоматизированного средства для преобразования высокоуровневых моделей UML, поддерживающих абстракции АОП, к низкоуровневым детализированным моделям, по которым может быть сгенерирован программный код, т.е.предложено проводить связывание на уровне моделей.

Целью следующей части настоящей статьи является дать представление о применимости АО-методов в обработке информационных потоков в объектно-ориентированной среде, вариантом реализации которой является объектная (объектно-иерархическая) база данных программного комплекса диспетчерского пункта (ДП) АСУТП. При составлении диаграмм мы будем придерживаться нотации, предложенной в [15].


Содержание раздела