Телекоммуникационные технологии. Том 1

         

Advanced BIFS


Продвинутый BIFS предоставляет дополнительные узлы, которые могут быть использованы в графе сцены для мониторирования доступности и управляемости среды, такие как посылка команд серверу, продвинутый контроль воспроизведения, и так называемый EXTERNPROTO, узел, который обеспечивает дальнейшую совместимость с VRML, и который позволяет написание макросов, определяющих поведение объектов. Предусмотрено улучшенное сжатие данных BIFS, и в частности оптимальное сжатие для сеток и для массивов данных.



Анимация лица


Часть стандарта, связанная с ‘анимацией лица’, позволяет посылать параметры, которые помогают специфицировать и анимировать синтезированные лица. Эти модели не являются сами частью стандарта MPEG-4, стандартизированы только параметры.

• Определение и кодирование анимационных параметров лица (модельно независимое):
• Позиции характерных деталей и их ориентация для определения сеток при анимации лица.
• Визуальные конфигурации губ, соответствующие фонемам речи.
• Определение и кодирование параметров описания лица (для калибровки модели):
• 3-D позиции характерных признаков (деталей)
• 3-D калибровочные сетки для анимации головы.
• Текстурная карта лица.
• Персональные характеристики.
• Кодирование лицевой текстуры.


‘Лицевой анимационный объект’ может использоваться для представления анимированного лица. Форма, текстура и выражения лица управляются параметрами определения лица FDP (Facial Definition Parameters) и/или параметрами анимации лица FAP (Facial Animation Parameters). Объект лица содержит базовый вид лица с нейтральным выражением. Это лицо может уже отображено. Оно может также получить немедленно анимационные параметры из потока данных, который осуществит анимацию лица: выражения, речь и т.д. Между тем, могут быть посланы параметры определения, которые изменять облик лица от некоторого базового к заданному лицу со своей собственной формой и (опционно) текстурой. Если это желательно, через набор FDP можно загрузить полную модель лица.

Анимация лица в MPEG-4 версии 1 предназначена для высоко эффективного кодирования параметров анимации, которые могут управлять неограниченным числом моделей лица. Сами модели не являются нормативными, хотя существуют средства описания характеристик модели. Кадровое и временное-DCT кодирование большой коллекции FAP может использоваться для точной артикуляции.

Двоичный формат систем для сцены BIFS (Systems Binary Format for Scenes), предоставляет возможности поддержки анимации лица, когда нужны обычные модели и интерпретации FAP:

Параметры определения лица FDP (Face Definition Parameters) в BIFS (модельные данные являются загружаемыми, чтобы конфигурировать базовую модель лица, запомненную в терминале до декодирования FAP, или инсталлировать специфическую модель лица в начале сессии вместе с информацией о том, как анимировать лицо).

Таблица анимации лица FAT (Face Animation Table) в рамках FDP (загружаемые таблицы функционального соответствия между приходящими FAP и будущими контрольными точками сетки лица. Это дает кусочно-линейную карту входящих FAP для управления движениями лица. Например: FAP может приказать ‘open_jaw (500)’ (открыть челюсти) и таблица определит, что это означает в терминах перемещения характерных точек;

Интерполяционная методика для лица FIT (Face Interpolation Technique) в BIFS (загружаемое определение карты входящих FAP в общий набор FAP до их использования в характерных точках, которая вычисляется с использованием полиномиальных функций при получении интерполяционного графа лица). Это может использоваться для установления комплексных перекрестных связей FAP или интерполяции FAP, потерянных в потоке, с привлечением FAP, которые доступны для терминала.

Эти специфицированные типы узлов в BIFS эффективно предоставляют для моделей формирования лица встроенную калибровку модели, работающей в терминале или загружаемой стандартной модели, включающей форму, текстуру и цвет.



Анимация тела


В версии 2 к анимации лица, существовавшей в версии 1, добавлена анимация тела.


Тело является объектом способным генерировать модели виртуального тела и анимации в форме наборов 3-D многоугольных сеток, пригодных для отображения (rendering). Для тела определены два набора параметров: набор параметров определения тела BDP (Body Definition Parameter), и набор параметров анимации тела BAP (Body Animation Parameter). Набор BDP определяет параметры преобразования тела по умолчанию в требующееся тело с нужной поверхностью, размерами, и (опционно) текстурой. Параметры анимации тела (BAP), если интерпретированы корректно, дадут разумно высокий уровень результата выражаемого в терминах позы и анимации для самых разных моделей тела, без необходимости инициализировать или калибровать модель.

Конструкция объекта тело содержит обобщенное виртуальное человеческое тело в позе по умолчанию. Это тело может быть уже отображено. Объект способен немедленно принимать BAP из потока данных, который осуществляет анимацию тела. Если получены BDP, они используются для преобразования обобщенного тела в конкретное, заданное содержимым параметров. Любой компонент может быть равен нулю. Нулевой компонент при отображении тела заменяется соответствующим значением по умолчанию. Поза по умолчанию соответствует стоящей фигуре. Эта поза определена следующим образом: стопы ориентированы в фронтальном направлении, обе руки размещаться вдоль тела с ладонями повернутыми внутрь. Эта поза предполагает также, что все BAP имеют значения по умолчанию.

Не делается никаких предположений и не предполагается никаких ограничений на движения или сочленения. Другими словами модель человеческого тела должна поддерживать различные приложения, от реалистических симуляций человеческих движений до сетевых игр, использующих простые человекоподобные модели.

Стандарт анимации тела был разработан MPEG в сотрудничестве с Рабочей группой анимации гуманоидов (Humanoid Animation Working Group) в рамках консорциума VRML.



Анимируемые D сетки


Сетка 2-D mesh является разложением плоской 2-D области на многоугольные кусочки. Вершины полигональных частей этой мозаики называются узловыми точками сетки. MPEG-4 рассматривает только треугольные сетки, где элементы мозаики имеют треугольную форму. Динамические 2-D сетки ссылаются на сетки 2-D и информацию перемещения всех узловых точек сетки в пределах временного сегмента интереса. Треугольные сетки использовались в течение долгого времени для эффективного моделирования формы 3-D объектов и воспроизведения в машинной графики. Моделирование 2-D сеток может рассматриваться как проекцию треугольных 3-D сеток на плоскость изображения.

Узловые точки динамической сетки отслеживают особенности изображения во времени с помощью соответствующих векторов перемещения. Исходная сетка может быть регулярной, или адаптироваться к характеру изображения, которая называется сеткой, адаптируемой к изображению. Моделирование 2-D сетки, адаптируемая к изображению, соответствует неоднородному стробированию поля перемещения в некотором числе узловых точек вдоль контура и внутри видео объекта. Методы выбора и отслеживания этих узловых точек не является предметом стандартизации.

В 2-D сетке, базирующейся на текстуре, треугольные элементы, в текущем кадре деформируются при перемещении узловых точек. Текстура в каждом мозаичном элементе эталонного кадра деформируется с помощью таблиц параметрического соответствия, определенных как функция векторов перемещения узловых точек. Для треугольных сетей обычно используется аффинное преобразование. Его линейная форма предполагает текстурный мэпинг с низкой вычислительной сложностью. Афинный мэпинг может моделировать преобразование, вращение, изменение масштаба, отражение и вырезание и сохранение прямых линий. Степени свободы, предоставляемые тремя векторами перемещения вершин треугольника, соответствуют шести параметрам афинного преобразования (affine mapping). Это предполагает, что исходное 2-D поле перемещения может быть компактно представлено движением узловых точек, из которого реконструируется афинное поле перемещение.
В то же время, структура сетки ограничивает перемещения смежных, мозаичных элементов изображения. Следовательно, сетки хорошо годятся для представления умеренно деформируемых, но пространственно непрерывных полей перемещения.

Моделирование 2-D сетки привлекательно, та как 2-D сетки могут сформированы из одного вида объекта, сохраняя функциональность, обеспечиваемую моделированием с привлечением 3-D сеток. Подводя итог можно сказать, что представления с объектно-ориентированными 2-D сетками могут моделировать форму (многогранная апроксимация контура объекта) и перемещение VOP в неоднородной структуре, которая является расширяемой до моделирования 3-D объектов, когда имеются данные для конструирования таких моделей. В частности, представление видео-объектов с помощью 2-D-сетки допускает следующие функции:

A. Манипуляция видео-объектами



Улучшенная реальность. Объединение виртуальных (сгенерированых ЭВМ) изображений с реальными движущимися объектами (видео) для создания улучшенной видео информации. Изображения, созданные компьютером должны оставаться в идеальном согласии с движущимися реальными изображениями (следовательно необходимо отслеживание).

Преображение/анимация синтетических объектов. Замещение естественных видео объектов в видео клипе другим видео объектом. Замещающий видео объект может быть извлечен из другого естественного видео клипа или может быть получен из объекта статического изображения, используя информацию перемещения объекта, который должен быть замещен.

Пространственно-временная интерполяция. Моделирование движения сетки представляет более надежную временную интерполяцию с компенсацией перемещения.

B. Сжатие видео-объекта



Моделирование 2-D сеток может использоваться для сжатия, если выбирается передача текстурных карт только определенных ключевых кадров и анимация этих текстурных карт для промежуточных кадров. Это называется само преображением выбранных ключевых кадров с использованием информации 2-D сеток.

C. Видео индексирование, базирующееся на содержимом



Представление сетки делает возможным анимационные ключевые мгновенные фотографии для подвижного визуального обзора объектов.

Представление сетки предоставляет точную информацию о траектории объекта, которая может использоваться для получения визуальных объектов с специфическим перемещением.

Сетка дает представление формы объекта, базирующееся на вершинной схеме, которое более эффективно, чем представление через побитовую карту.


Архитектура терминала


Представление информации, специфицированное в стандарте MPEG-7 предоставляет средства описаний кодированного мультимедийного материала. Объект, который использует такое кодовое представление мультимедийного материала, называется "терминалом". Этот терминал может соответствовать отдельно стоящему приложению или быть целой прикладной системой. Архитектура такого терминала изображена на рис. 4, а его работа описана ниже.

Рис. 4. Архитектура MPEG-7

В нижней части рис. 4 размещена система передачи/записи. Это относится к нижнему уровню инфраструктуры доставки (сетевой уровень и ниже). Эти уровни передают мультиплексированные потоки данных уровню доставки. Транспортная среда MPEG-7 базируется на многих системах доставки данных. Это включает, например, транспортные потоки MPEG-2, IP или MPEG-4 (MP4) файлы или потоки. Уровень доставки реализует механизмы, позволяющие выполнять синхронизацию, формирование кадров и мультиплексирование материала MPEG-7. Материал MPEG-7 может быть доставлен независимо или вместе с данными, которые он описывает. Архитектура MPEG-7 позволяет передавать данные (например, запросы) назад из терминала к отправителю или серверу.

Уровень доставки предоставляет уровню сжатия MPEG-7 элементарные потоки. Элементарные потоки MPEG-7 состоят из последовательности индивидуально доступных порций данных, называемых блоками доступа (Access Units). Блок доступа является наименьшим информационным объектом, к которому может относиться временная информация. Элементарные потоки MPEG-7 содержат данные различной природы: Схемная информация: эта информация определяет структуру описания MPEG-7;Информация описаний: эта информация является либо полным описанием мультимедийного материала или фрагментами такого описания.

Уровень доставки приложения может также по запросу доставлять мультимедийный материал. Для этих целей могут использоваться существующие средства доставки.

Данные MPEG-7 могут быть представлены либо в текстовом, либо в двоичном формате, или в виде комбинации этих форматов, в зависимости от типа приложения.
MPEG- 7 определяет однозначную связь между двоичным и текстовым форматами. Возможно установление двухсторонней однозначной связи между текстовым и двоичным представлениями. Следует заметить, что это не всегда доступно: некоторые приложения могут не захотеть передавать всю информация, содержащуюся в текстовом представлении, а могут предпочесть использовать более эффективную с точки зрения полосы двоичную кодировку с потерями.

Синтаксис текстуального формата определен в части 2 (DDL - Description Definition Language) стандарта. Синтаксис двоичного формата (BiM - двоичный формат для данных MPEG-7) определен в части 1 (системы) стандарта. Схемы определены в частях 3, 4 и 5 (визуальная, аудио и схемы описания мультимедиа) стандарта.

На уровне компрессии, производится разборка потока блоков доступа (текстуальных или двоичных), а описания материала реконструируются. MPEG-7 не перепоручает реконструкцию текстуального представления в качестве промежуточного шага декодирующему процессу. Двоичный поток MPEG-7 может быть разобран с помощью BiM, передан в текстовом формате и затем в этом виде транспортирован для последующей реконструкционной обработки, или двоичный поток может быть разобран BiM и затем передан в подходящем формате для последующей обработки.

Блоки доступа MPEG-7 далее структурируются как команды, в которые инкапсулированы схемы описания. Команды придают материалу MPEG-7 динамический вид. Они позволяют пересылать описания одним куском или в виде небольших фрагментов. Команды делают возможными базовые операции с материалом MPEG-7, такие как актуализация дескриптора, удаление части описания или добавление новой структуры DDL. На реконструкционном этапе уровня компрессии выполняется актуализация описания и соответствующих схем посредством указанных команд.


Аудио-кодирование с малыми задержками


В то время как универсальный аудио кодировщик MPEG-4 очень эффективен при кодировании аудио сигналов при низких скоростях передачи, он имеет алгоритмическую задержку кодирования/декодирования, достигающую нескольких сот миллисекунд и является, таким образом, неподходящим для приложений, требующих малых задержек кодирования, таких как двунаправленные коммуникации реального времени. Для обычного аудио кодировщика, работающего при частоте стробирования 24 кГц и скорости передачи 24 кбит/с, алгоритмическая задержка кодирования составляет 110 мс плюс до 210 мс дополнительно в случае использования буфера. Чтобы кодировать обычные аудио сигналы enable с алгоритмической задержкой, не превышающей 20 мс, MPEG-4 версии 2 специфицирует кодировщик, который использует модификацию алгоритма MPEG-2/4 AAC (Advanced Audio Coding). По сравнению со схемами кодирования речи, этот кодировщик позволяет сжимать обычные типы аудио сигналов, включая музыку, при достаточно низких задержках. Он работает вплоть до частот стробирования 48 кГц и использует длину кадров 512 или 480 значений стробирования, по сравнению с 1024 или 960 значений, используемых в стандарте MPEG-2/4 AAC. Размер окна, используемого при анализе и синтезе блока фильтров, уменьшен в два раза. Чтобы уменьшить артифакты предэхо в случае переходных сигналов используется переключение размера окна. Для непереходных частей сигнала используется окно синусоидальной формы, в то время как в случае переходных сигналов используется так называемое окно с низким перекрытием. Использование буфера битов минимизируется, чтобы сократить задержку. В крайнем случае, такой буфер вообще не используется.



представляет шесть технологий: система


Окончательный проект аудио MPEG- 7 представляет шесть технологий: система аудио описаний (которая включает в себя дерево шкал и низкоуровневые дескрипторы), средства описания звуковых эффектов, средства описания тембра инструмента, описание голосового материала, сегмент молчания и дескрипторы мелодии, облегчающие обработку запросов.



Аудио MPEG-7 FCD включает в себя пять технологий: структура аудио описания (которая включает в себя масштабируемые последовательности, дескрипторы нижнего уровня и униформные сегменты тишины), средства описания тембра музыкального инструмента, средства распознавания звука, средства описания голосового материала и средства описания мелодии.


Аудио профайлы


Определены четыре аудио-профайла в MPEG-4 V.1:

Разговорный профайл предоставляет HVXC, который является параметрическим кодером голоса, рассчитанным на очень низкие скорости передачи, CELP узкополосным/широкополосным кодером голоса, или интерфейсом текст-голос.

Профайл синтеза предоставляет собой синтез, использующий SAOL, волновые таблицы и интерфейс текст-голос для генерации звука и речи при очень низких скоростях передачи.

Масштабируемый профайл, супер набор профайла речи, удобен для масштабируемого кодирования речи и музыки для таких сетей, как Интернет и NADIB (Narrow band Audio DIgital Broadcasting). Диапазон скоростей передачи лежит в пределах от 6 кбит/с до 24 кбит/с, при ширине полосы 3.5 и 9 кГц.

Главный профайл является расширенным супер набором всех других профайлов, содержащий средства для синтетического и естественного аудио.

Еще четыре профайла добавлено в MPEG-4 V.2:

Профайл высококачественного аудио содержит кодировщик голоса CELP и простой кодировщик AAC, содержащий систему долгосрочного предсказания. Масштабируемое кодирование может быть выполнено с помощью AAC масштабируемого объектного типа. Опционно, может использоваться синтаксис потока, устойчивый к ошибкам (ER).

Профайл аудио с низкой задержкой (Low Delay Audio) содержит HVXC и CELP кодировщики голоса (опционно использующие синтаксис ER), AAC-кодеры с низкой задержкой и интерфейс текст-голос TTSI.

Профайл натурального аудио содержит все средства кодирования натурального аудио, доступные в MPEG-4.

Профайл межсетевого мобильного аудио (Mobile Audio Internetworking) содержит AAC масштабируемые объектные типы с малой задержкой, включая TwinVQ и BSAC. Этот профайл предназначен для расширения телекоммуникационных приложений за счет алгоритмов не-MPEG кодирования речи с возможностями высококачественного аудио кодирования.



Аудио-система


MPEG-4 аудио предлагает широкий перечень приложений, которые покрывают область от понятной речи до высококачественного многоканального аудио, и от естественных до синтетических звуков. В частности, он поддерживает высокоэффективную презентацию аудио объектов, состоящих из:

Речь: Кодирование речи может производиться при скоростях обмена от 2 кбит/с до 24 кбит/с. Низкие скорости передачи, такие как 1.2 кбит/с, также возможны, когда разрешена переменная скорость кодирования. Для коммуникационных приложений возможны малые задержки. Когда используются средства HVXC, скорость и высота тона могут модифицироваться пользователем при воспроизведении. Если используются средства CELP, изменение скорости воспроизведения может быть реализовано с помощью дополнительного средства.

Синтезированная речь: TTS-кодировщики с масштабируемой скоростью в диапазоне от 200 бит/с до 1.2 кбит/с которые позволяют использовать текст или текст с интонационными параметрами (вариация тона, длительность фонемы, и т.д.), в качестве входных данных для генерации синтетической речи. Это включает следующие функции.

Синтез речи с использованием интонации оригинальной речи

Управление синхронизацией губ и фонемной информации.

Трюковые возможности: пауза, возобновление, переход вперед/назад.

Международный язык и поддержка диалектов для текста (т.е. можно сигнализировать в двоичном потоке, какой язык и диалект следует использовать)

Поддержка интернациональных символов для фонем.

Поддержка спецификации возраста, пола, темпа речи говорящего.

Поддержка передачи меток анимационных параметров лица FAP (facial animation parameter).

Общие аудио сигналы. Поддержка общей кодировки аудио потоков от низких скоростей до высококачественных. Рабочий диапазон начинается от 6 кбит/с при полосе ниже 4 кГц и распространяется до широковещательного качества передачи звукового сигнала для моно и многоканальных приложений.

Синтезированный звук: Поддержка синтезированного звука осуществляется декодером структурированного звука (Structured Audio Decoder), который позволяет использовать управление музыкальными инструментами с привлечением специального языка описания.


Синтетический звук с ограниченной сложностью: Реализуется структурируемым аудио декодером, который позволяет работать со стандартными волновыми форматами.

Примерами дополнительной функциональности является возможность управления скоростью обмена и масштабируемость в отношении потоков данных, полосы пропускания, вероятности ошибок, сложности, и т.д. как это определено ниже.

Возможность работы при изменении скорости передачи допускает изменение временного масштаба без изменения шага при выполнении процесса декодирования. Это может быть, например, использовано для реализации функции "быстро вперед" (поиск в базе данных) или для адаптации длины аудио-последовательности до заданного значения, и т.д.

Функция изменения шага позволяет варьировать шаг без изменения временного масштаба в процессе кодирования или декодирования. Это может быть использовано, например, для изменения голоса или для приложений типа караоке. Эта техника используется в методиках параметрического и структурированного кодирования звука.

Изменение скорости передачи допускает анализ потока данных с разбивкой на субпотоки меньшей скорости, которые могут быть декодированы в осмысленный сигнал. Анализ потока данных может осуществляться при передаче или в декодере.

Масштабируемость полосы пропускания является частным случаем масштабируемости скорости передачи данных, когда часть потока данных, представляющая часть частотного спектра может быть отброшена при передаче или декодировании.

Масштабируемость сложности кодировщика позволяет кодировщикам различной сложности генерировать корректные и осмысленные потоки данных.

Масштабируемость сложности декодера позволяет заданную скорость потока данных дешифровать посредством декодеров с различным уровнем сложности. Качество звука, вообще говоря, связано со сложностью используемого кодировщика и декодера.

Аудио эффекты предоставляют возможность обрабатывать декодированные аудио сигналы с полной точностью таймирования с целью достижения эффектов смешения, реверберации, создания объемного звучания, и т.д.


Базовые элементы


Спецификация мультимедийных DS MPEG-7 определяет определенное число схемных средств, которые облегчают формирование и выкладку описаний MPEG-7. Схемные средства состоят из корневого элемента, элементов верхнего уровня и средств выкладки (Package Tools). Корневые элементы, которые являются начальными элементами описания MPEG-7, позволяют сформировать полные XML-документы и фрагменты описания MPEG-7. Элементы верхнего уровня, которые позволяют корневым элементам в описании MPEG-7 организовать DS для объектно-ориентированных задач описания, таких как описание изображения, видео, аудио или аудио-визуальный материал, собрания (коллекции), пользователи или семантики мира. Созданы пакетные средства для группирования или ассоциации связанных компонентов DS описаний в каталоги или пакеты. Пакеты полезны для организационных и передающих структур и типов описательной информации MPEG-7 для систем поиска и для помощи при просмотре пользователям, незнакомым с особенностями описаний MPEG-7.

Спецификация мультимедийных DS MPEG-7 определяет также некоторое число базовых элементов, которые используются повторно в качестве фундаментальной конструкции при определении MPEG-7 DS. Многие базовые элементы предоставляют специфические типы данных и математические структуры, такие как вектора и матрицы, которые важны для описания аудио-визуального материала. Они включаются также в качестве элементов для связи медиа файлов и локализации сегментов, областей и т.д. Многие базовые элементы предназначены для специальных нужд описания аудио-визуального материала, таких как описание времени, мест, людей, индивидуальностей, групп, организаций, и других текстовых аннотаций. Из-за их важности для описания аудио-визуального материала, давайте очертим подходы MPEG-7 к описанию временной информации и текстовых аннотаций:

Временная информация: DS для описания времени базируется на стандарте ISO 8601, который был воспринят схемным языком XML. Временные DS предоставляют временную информацию в медиа-потоки и для реального мира. MPEG-7 расширяет спецификацию времени ISO 8601 для того, чтобы описать время в терминах стробирования аудио-визуального материала, например, путем подсчета периодов стробирования. Это позволяет поддержать эффективное описание временной информации в больших массивах аудио-визуального материала.

Текстовая аннотация: текстовая аннотация является также важным компонентом многих DS. MPEG-7 предоставляет некоторое число базовых конструкций для текстового аннотирования, включая свободный текст (слова, фразы), структурированный текст (текст плюс назначение слов) и зависимая структурированная аннотация (структурированный текст плюс взаимные связи), для того, чтобы поддерживать широкий диапазон функций текстовых описаний.



Базовые структуры


Существует пять визуально связанных базовых структур: сеточная выкладка, временные ряды (Time Series), многопрекционность (MultiView), пространственные 2D-координаты и временная интерполяция (TemporalInterpolation).



В октябре 1996, группа MPEG


В октябре 1996, группа MPEG начала разработку проблем, рассмотренных выше. Новым элементом семейства MPEG стал интерфейс описаний мультмедийного материала, называемый “Multimedia Content Description Interface” (или сокращенно MPEG-7), целью которого явилась стандартизация базовых технологий, позволяющих описание аудио-визуальных данных в рамках мультимедийной среды.

Аудиовизуальный материал MPEG-7 может включать в себя: статические изображения, графику, 3D модели, звук, голос, видео и композитную информацию о том, как эти элементы комбинируются при мультимедийной презентации. В особых случаях этих общих видов данных сюда может включаться выражения лица и частные характеристики личности.

Средства описаний MPEG-7 однако не зависят от способа кодирования и записи материала. Можно сформировать описание MPEG-7 аналогового фильма или картинки, которая напечатана на бумаге, точно также, как и цифрового материала.

MPEG-7, как и другие объекты семейства MPEG, предоставляют стандартное представление аудио-визуальных данных, удовлетворяющих определенным требованиям. Одной из функций стандарта MPEG-7 является обеспечение ссылок на определенные части мультимедийного материала. Например, дескриптор формы, используемый в MPEG-4, может оказаться полезным в контексте MPEG-7, точно также Это может относиться к полям вектора перемещения, используемым в MPEG-1 и MPEG-2.

В своих описаниях MPEG-7 допускает различную гранулярность, предлагая возможность существования различных уровней дискриминации. Хотя описание MPEG-7 не зависит от кодового представления материала, он может использовать преимущества, предоставляемые кодированным материалом MPEG-4. Если материал кодирован с использованием MPEG-4, который предоставляет средства кодирования аудио-визуального материала, в виде объектов, имеющих определенные связи во времени (синхронизация) и в пространстве (на сцене для видео или в комнате для аудио), будет возможно связать описания с элементами (объектами) в пределах сцены, такими как аудио и видео объекты.



Так как описательные характеристики должны иметь смысл в контексте приложения, они будут различными для разных приложений. Это подразумевает, что один и тот же материал может быть описан различным образом в зависимости от конкретного приложения. Возьмем в качестве примера визуальный материал: нижним уровнем абстракции будет описание, например, формы, размера, текстуры, цвета, движения (траектории) и позиции ("где на сцене может размещаться объект"). А для аудио: ключ, тональность, темп, вариации темпа, положение в звуковом пространстве. Высшим уровнем представления будет семантическая информация: "Это сцена с лающей коричневой собакой слева и голубым мячом, падающим справа, с фоновым звуком проезжающих авто". Могут существовать промежуточные уровни абстракции.

Уровень абстракции относится к способу выделения определенных характеристик: многие характеристики нижнего уровня могут быть выделены полностью автоматически, в то время как характеристики высокого уровня требуют большего взаимодействия с человеком.

Кроме описания материала, требуется также включить другие виды информации о мультимедийных данных:

Форма. Примером формы является используемая схема кодирования (например, JPEG, MPEG-2), или общий объем данных. Эта информация помогает определить, может ли материал быть воспринят пользователем.

Условия доступа к материалу. Это включает учет ограничений на использование материала, учитывающих авторские права и права собственности, а также цену.

Классификация. Это включает оценку происхождения материала и его классификацию по предопределенным категориям.

Связь сдругим важным материалом. Информация может помочь пользователю ускорить поиск.

Контекст. В случае записанного документального материала, очень важно знать обстоятельства записи (например, олимпийские игры 1996, финал 200-метрового забега для мужчин с барьерами)

Во многих случаях будет желательно использовать для описания текстовые данные. Необходимо позаботиться о том, чтобы полезность описаний была независима по возможности от языка.


Хорошим примером текстуального описания является указания авторов, названия фильма и пр.

Следовательно, средства MPEG-7 позволят формировать описания (т.e., наборы схем описания и соответствующих дескрипторов по желанию пользователя) материала, который может содержать:

Информацию, описывающую процессы создания и производства материала (директор, заголовок, короткометражный игровой фильм)

Информацию, относящуюся к использованию материала (указатели авторского права, история использования, расписание вещания)

Информация о характеристиках записи материала (формат записи, кодирование)

Структурная информация о пространственных, временных или пространственно-временных компонентах материала (разрезы сцены, сегментация областей, отслеживание перемещения областей)

Информация о характеристиках материала нижнего уровня (цвета, текстуры, тембры звука, описание мелодии)

Концептуальная информация о реальном содержании материала (объекты и события, взаимодействие объектов)

Информация о том, как эффективно просматривать материал (конспекты, вариации, пространственные и частотные субдиапазоны, ...)

Информация о собрании объектов.

Информация о взаимодействии пользователя с материалом (предпочтения пользователя, история использования)

Все эти описания являются, конечно, эффективно закодированными для поиска, отбора и т.д.

Чтобы удовлетворить этому многообразию дополнительных описаний материала, MPEG-7 осуществляет описание материала с нескольких точек зрения. Наборы средств описаний, разработанные с учетом этих точек зрения, представляются в виде отдельных объектов. Однако они взаимосвязаны и могут комбинироваться множеством способов. В зависимости от приложения, некоторые будут присутствовать, а другие отсутствовать, а могут присутствовать лишь частично.

Описание, сформированное с помощью средств MPEG-7, будет ассоциировано с самим материалом, чтобы позволить быстрый и эффективный поиск и фильтрацию материала, представляющего интерес для пользователя.

Данные MPEG-7 могут физически размещаться вместе с ассоциированным AВ-материалом, в том же информационном потоке или в той же системе памяти, но описания могут также размещаться на другом конце света.


Когда материал и его описания размещены не совместно, необходим механизм для соединения AВ-материала и его описаний MPEG-7; эти связи должны работать в обоих направлениях.

Тип материала и запрос могут не совпадать; например, визуальный материал может быть запрошен, используя визуальное содержимое, музыка, голос, и т.д. Согласование данных запроса и описания MPEG-7 выполняется поисковыми системами и агентами фильтрации.

MPEG-7 относится ко многим различным приложениям в самых разных средах. Этот стандарт должен обеспечивать гибкую и масштабируемую схему описания аудио-визуальных данных. Следовательно, MPEG-7 не определяет монолитную систему описания материала, а предлагает набор методов и средств для различных подходов описания аудио-визуального материала. MPEG-7 сконструирован так, чтобы учесть все подходы, учитывающие требования основных стандартов, таких как, SMPTE Metadata Dictionary, Dublin Cилиe, EBU P/Meta, и TV Anytime. Эти стандарты ориентированы на специфические приложения и области применения, в то время как MPEG-7 пытается быть как можно более универсальным. MPEG-7 использует также схему XML в качестве языка выбора текстуального представления описания материала. Главными элементами стандарта MPEG-7 являются:

Дескрипторы (D). Представление характеристик, которые определяют синтаксис и семантику представления каждой из характеристик.

Схемы описания DS (Description Scheme), которые специфицируют структуру и семантику взаимодействия между компонентами. Эти компоненты могут быть дескрипторами и схемами описания.

Язык описания определений DDL (Description Definition Language), позволяющий создавать новые схемы описания и, возможно, дескрипторы и обеспечивающий расширение и модификацию существующих схем описания,

Системные средства служат для поддержки мультиплексирования описаний, синхронизации описаний и материала, механизмов передачи, кодовых представлений (как текстуальных, так и двоичных форматов) для эффективной записи и передачи, управления и защиты интеллектуальной собственности в описаниях MPEG-7.


Центральный профайл (core profile версия


Верификационный тест был создан для оценки характеристик средств временной масштабируемости MPEG-4 видео в центральном профайле (Core Profile).

Тестирование было выполнено с использованием метода "Single Stimulus". Тест создавался с использованием 45 субъектов из двух различных лабораторий. Результаты испытаний показывают, что качество последовательностей, закодированных с привлечением средств временного масштабирования сопоставимы по качеству с вариантом без масштабирования. Очевидно также, что средство временного масштабирования в центральном профайле обеспечивает лучшее качество при равных условиях, чем симулкастное кодирование в центральном профайле.



состоит из следующих частей:


Стандарт MPEG- 7 состоит из следующих частей:

Системы MPEG-7. Средства, которые необходимы при подготовке описаний MPEG-7 для эффективной передачи и записи, и для обеспечения синхронизации между материалом и описаниями. Эти средства имеют также отношение к охране интеллектуальной собственности.

Язык описания определений MPEG-7. Язык для определения новых схем описания и, возможно, новых дескрипторов.

MPEG-7 Audio – дескрипторы и схемы описания, имеющие отношение исключительно к описанию аудио материала.

MPEG-7 Visual – дескрипторы и схемы описания, имеющие отношение исключительно к описанию визуального материала

MPEG-7 Multimedia Description Schemes - дескрипторы и схемы описания, имеющие отношение к общим характеристикам описаний мультимедиа.

MPEG-7 Reference Software – программные реализации соответствующих частей стандарта MPEG-7

MPEG-7 Conformance – базовые принципы и процедуры тестирования рабочих характеристик практических реализаций MPEG-7.


Цвет GoF/GoP


Дескриптор цвета группа_кадров/группа_картинок расширяет возможности дескриптора масштабируемого цвета, который определен для статических изображений, чтобы выполнять цветовое описание видео сегментов или собрания статических изображений. Дополнительные два бита позволяют определить, была ли вычислена цветовая гистограмма, прежде чем было осуществлено преобразование Хара: для усреднения, медианы или пересечения. Усредненная гистограмма, которая соответствует усредненному значению счетчика для каждой ячейки всех кадров или изображений, эквивалентна вычислению совокупной цветовой гистограммы всех кадров или изображений с последующей нормализацией. Медианная гистограмма соответствует вычислению медианного значения счетчика для каждой ячейки совокупности кадров или изображений. Более надежно округлять ошибки и присутствие выбросов в распределении яркости изображения по сравнению с усредненной гистограммой. Гистограмма пересечения соответствует вычислению минимального значения счетчика для каждой ячейки совокупности кадров или изображений, чтобы получить цветовые характеристики “наименьшего общего” группы изображений. Заметим, что это отличается от гистограммы пересечения, которая является скалярной мерой. Аналогичные меры сходства/различия, которые используются для сравнения масштабируемых цветовых описаний, могут быть применены для сопоставления цветовых дескрипторов GoF/GoP.



Цветовое пространство


Понятие цветового пространства используется в других описаниях, базирующихся на цвете. В текущем описании, поддерживаются следующие цветовые пространства:

R,G,B

Y,Cr,Cb

H,S,V

HMMD

Матрица линейного преобразования с учетом R, G, B

Монохромное



DAI-синтаксис на языке СИ


DMIF V.2 вводит информативное дополнение, который предоставляет синтаксис C/C++ для прикладного интерфейса DMIF, как это рекомендуется API-синтаксисом.



Демультиплексирование


Демультиплексирование происходит на уровне доставки, который включает в себя слои TransMux и DMIF. Извлечение входящих информационных потоков из сетевого соединения или из памяти включает в себя два этапа. Во-первых, каналы должны быть найдены и открыты. Это требует наличия некоторого объекта, который осуществляет транспортный контроль и устанавливает соответствие между транспортными каналами и специальными элементарными потоками. Таблица карты таких потоков связывает каждый поток с ChannelAssociationTag (канальной меткой), которая служит указателем для канала, через который идет поток. Определение ChannelAssociationTags для реального транспортного канала, а также управление сессией и каналами осуществляется DMIF-частью стандарта MPEG-4.

Во-вторых, входящие потоки должны быть соответствующим образом демультиплексированы, чтобы восстановить SL-потоки пакетов от нижележащих каналов (входящих в принимающий терминал). В интерактивных приложениях, соответствующий узел мультиплексирования переправляет данные в вышерасположенные каналы (исходящие из принимающего терминала).

Базовый термин ‘TransMux Layer’ используется, чтобы абстрагироваться от нижележащей функциональности – существующей или будущей, которая пригодна для транспортировки потоков данных MPEG-4. Заметим, что этот уровень не определен в контексте MPEG-4. Примерами могут служить транспортный поток MPEG-2, H.223, ATM AAL 2, IP/UDP. Предполагается, что слой TransMux предоставляет защиту и средства мультиплексирования, этот уровень обеспечивает определенный класс QoS. Средства безопасности включают в себя защиту от ошибок и детектирование ошибок, удобное для данной сети или устройств памяти.

В любом конкретном сценарии приложения используется один или более специфических TransMux. Каждый демультиплексор TransMux предоставляет доступ к каналам TransMux. Требования на информационный интерфейс доступа к каналу TransMux те же, что и для всех интерфейсов TransMux. Они включают необходимость надежного детектирования ошибок, доставки, если возможно, ошибочных данных с приемлемой индикацией ошибок и кадрирование поля данных, которое может включать потоки либо SL либо FlexMux. Эти требования реализованы в интерфейсе TransMux (системная часть стандарта MPEG-4). Адаптация потоков SL должна быть специфицирована для каждого стека протоколов.

Средство FlexMux специфицировано MPEG для того, чтобы опционно предоставить гибкий метод, имеющий малую избыточность и задержку для переукладки данных в тех случаях, когда ниже лежащие протоколы не поддерживают это. Средство FlexMux само по себе недостаточно устойчиво по отношению к ошибкам и может либо использоваться в каналах TransMux с высоким QoS, либо для объединения элементарных потоков, которые достаточно устойчивы к ошибкам. FlexMux требует надежного детектирования ошибок. Эти требования реализованы в информационных примитивах прикладного интерфейса DMIF, который определяет доступ к данным в индивидуальных транспортных каналах. Демультиплексор FlexMux выделяет SL-потоки из потоков FlexMux.



Демультиплексирование, синхронизация и описание потоков данных


Отдельные элементарные потоки должны быть выделены на уровне доставки из входных данных некоторого сетевого соединения или из локального устройства памяти. Каждое сетевое соединение или файл в модели системы MPEG-4 рассматривается как канал TransMux. Демультиплексирование выполняется частично или полностью слоями вне области ответственности MPEG-4. Единственным демультиплексирующим средством, определенным MPEG-4, является FlexMux, которое может опционно использоваться для снижения задержки, получения низкой избыточности мультиплексирования и для экономии сетевых ресурсов.

Для целей интегрирования MPEG-4 в системную среду, интерфейс приложения DMIF является точкой, где можно получить доступ к элементарным потокам, как к потокам sync. DMIF является интерфейсом для реализации функций, недоступных в MPEG. Управляющая часть интерфейса рассмотрена в разделе DMIF.

MPEG-4 определяет модель системного декодера. Это позволяет точно описать операции терминала, не делая ненужных предположений о деталях практической реализации. Это важно для того, чтобы дать свободу разработчикам терминалов MPEG-4 и декодирующих приборов. Это оборудование включает в себя широкий диапазон аппаратов от телевизионных приемников, которые не имеют возможности взаимодействовать с отправителем, до ЭВМ, которые полноценный двунаправленный коммуникационный канал. Некоторые приборы будут получать потоки MPEG-4 через изохронные сети, в то время как другие будут использовать для обмена информацией MPEG-4 асинхронные средства (например, Интернет). Модель системного декодера предоставляет общие принципы, на которых могут базироваться все реализации терминалов MPEG-4.

Спецификация модели буфера и синхронизации является существенной для кодирующих приборов, которые могут не знать заранее, тип терминала и метод получения кодированного потока данных. Спецификация MPEG-4 делает возможным для кодирующего прибора проинформировать декодер о ресурсных требованиях, может оказаться невозможным для приемника реагировать на сообщение передатчика.



Дескриптор сегмента (SegmentDescriptor)


Массив SegmentDescriptors добавляется в качестве составного элемента в ES_Descriptor. SegmentDescriptor идентифицирует и помечает сегмент потока, так что отдельные сегменты потока могут быть адресуемы с помощью их полей url в узле TemporalTansform.



Дескрипторы перемещения


Существует четыре дескриптора перемещения: перемещение камеры, траектория перемещение объекта, параметрическое движение объекта и двигательная активность.



Детальное техническое описание MPEG-DMIF и систем


Рис. 3 показывает как потоки, приходящие из сети (или запоминающего устройства), как потоки TransMux, демультиплексируются в потоки FlexMux и передаются соответствующим демультиплексорам FlexMux, которые извлекают элементарные потоки. Элементарные потоки (ES) анализируются и передаются соответствующим декодерам. Декодирование преобразует данные в AV объект и выполняет необходимые операции для реконструкции исходного объекта AV, готового для рэндеринга на соответствующем аппарате. Аудио и визуальные объекты представлены в их кодированной форме, которая описана в разделах 10 и 9 соответственно. Реконструированный объект AV делается доступным для слоя композиции при рэндеринга сцены. Декодированные AVO, вместе с данными описания сцены, используются для композиции сцены, как это описано автором. Пользователь может расширить возможности, допущенные автором, взаимодействовать со сценой, которая отображается.

Рис. 3. Главные компоненты терминала MPEG-4 (принимающая сторона)



в настоящее время определяет архитектуру


Системы MPEG-7 в настоящее время определяет архитектуру терминала и нормативных интерфейсов.


Визуальные объекты могут иметь искусственное


Визуальные объекты могут иметь искусственное или натуральное происхождение.


DMIF


DMIF поддерживает следующие функции:

Прозрачный интерфейс MPEG-4 DMIF-приложения независящий оттого, является ли партнер удаленным интерактивным или локальной запоминающей средой.

Контроль установления каналов FlexMux

Использование однородных сетей между интерактивными партнерами: IP, ATM, мобильные, PSTN, узкополосные ISDN.


Основные средства, вводимые DMIF версия 2 предоставляют поддержку (ограниченную) мобильных сетей и мониторирования QoS.




DMIF (Delivery Multimedia Integration Framework) является протоколом сессии для управления мультимедийными потоками поверх общих средств доставки данных. В принципе это имеет много общего с FTP. Единственное (существенное) отличие заключается в том, что FTP предоставляет данные, DMIF предоставляет указатели, где получить данные (streamed).

Когда работает FTP, первым действием, которое производит протокол, является установление сессии с удаленным партнером. Далее, выбираются файлы, и FTP посылает запрос об их передаче, партнер FTP пересылает файл через отдельное, сформированное для этой цели соединение.

Аналогично, когда работает DMIF, первым действием, которое он выполняет, является установление сессии с удаленным партнером. Позднее, выбираются потоки и DMIF посылает запрос, передать их, партер DMIF в отклике пришлет указатель на соединение, где будут проходить потоки, и затем также устанавливает соединение.

По сравнению с FTP, DMIF является системой и протоколом. Функциональность, предоставляемая DMIF, определяется интерфейсом, называемым DAI (DMIF-Application Interface), и реализуется через протокольные сообщения. Эти протокольные сообщения для разных сетей могут отличаться.

При конструировании DMIF рассматривается и качество обслуживания (QoS), а DAI позволяет пользователю DMIF специфицировать требования для нужного потока. Проверка выполнения требований оставляется на усмотрение конкретной реализации DMIF. Спецификация DMIF предоставляет советы, как решать такие задачи на новом типе сети, таком, например, как Интернет.

Интерфейс DAI используется для доступа к широковещательному материалу и локальным файлам, это означает, что определен один, универсальный интерфейс для доступа к мультимедийному материалу для большого числа технологий доставки.

Как следствие, уместно заявить, что интегрирующая система DMIF покрывает три главные технологии, интерактивную сетевую технику, широковещательную технологию и работу с дисками; это показано на рис. 4 ниже.

Рис. 4.

Доминантный цвет(а)


Этот дескриптор цвета является наиболее удобным для представления локальных характеристик (области объекта или изображения), где для предоставления цветовой информации достаточно малого числа цветов. Могут использоваться и полные изображения, например, картинки флагов или цветных торговых марок. Квантование цвета используется для получения малого числа характерных цветов в каждой области/изображении. Соответственно вычисляется процент каждого дискретизируемого цвета в области. Определяется также пространственная когерентность всего дескриптора.



Доставка потоков данных


Синхронизованная доставка потока данных отправителя получателю, использующая различные QoS, доступные в сети, специфицирована в терминах слоя синхронизации и доставки, которые содержат двухслойный мультиплексор (см. рис. 2).

Первый слой мультиплексирования управляется согласно спецификации DMIF (Delivery Multimedia Integration Framework). Это мультиплексирование может быть реализовано определенным в MPEG мультиплексором FlexMux, который позволяет группировать элементарные потоки ES (Elementary Streams) с низкой избыточностью. Мультиплексирование на этом уровне может использоваться, например, для группирования ES с подобными требованиями по QoS, чтобы уменьшить число сетевых соединений или значения задержек.

Слой "TransMux" (Transport Multiplexing) на рис. 2 моделирует уровень, который предлагает транспортные услуги, удовлетворяющие требованиям QoS. MPEG-4 специфицирует только интерфейс этого слоя, в то время как остальные требования к пакетам данных будут определяться транспортным протоколом. Любой существующий стек транспортных протоколов, например, (RTP)/UDP/IP, (AAL5)/ATM, или MPEG-2 Transport Stream поверх подходящего канального уровня может стать частным случаем TransMux. Выбор оставлен за конечным пользователем или серис-провайдером, и позволяет использовать MPEG-4 с широким спектром операционного окружения.

Рис. 2. Модель системного слоя MPEG-4

Использование мультиплексора FlexMux является опционным и, как показано на рис. 2, этот слой может быть пустым, если нижележащий TransMux предоставляет все необходимые функции. Слой синхронизации, однако, присутствует всегда. С учетом этого возможно:

идентифицировать модули доступа, транспортные временные метки и эталонную временную информацию, а также регистрировать потерю данных.

опционно выкладывать данные от различных элементарных потоков в потоки FlexMux

передавать управляющую информацию:

индицировать необходимый уровень QoS для каждого элементарного потока и потока FlexMux;

транслировать данные требования QoS в действительные сетевые ресурсы;

ассоциировать элементарные потоки с медиа-объектами

передавать привязку элементарных потоков к FlexMux и TransMux каналам



Двигательная активность


Просмотр человеком видео или анимационной последовательности воспринимается как медленная последовательность, быстро протекающий процесс, последовательность действий и т.д. Дескриптор активности воспринимает интуитивное понятие ‘интенсивность действия’ или ‘темп действий’ в видео сегменте. Примеры высокой ‘активности’ включают такие сцены, как ‘ведение счета голов в футбольном матче’, ‘автомобильные гонки’ и т.д. С другой стороны сцены, типа ‘чтение новостей’, ‘интервью’, ‘снимок’ и т.д. воспринимаются как кадры низкой активности. Видео материал охватывает диапазон от низкой до высокой активности, следовательно нам нужен дескриптор, который позволяет нам точно выражать активность данной видео последовательности/снимка и всесторонне перекрывать упомянутый выше диапазон. Дескриптор активности полезен для приложений, таких как видео наблюдение, быстрый просмотр, динамическое видео резюмирование, информационные запросы и т.д. Например, мы можем замедлить темп презентации кадров, если дескриптор активности указывает на высокую активность, так чтобы облегчить просмотр этой активности. Другим примером приложения является нахождения всех кадров высокой активности в новой видео программе, которая может рассматриваться как просмотр, так и абстракцию.

3.4.6. Локализация
3.4.6.1. Локатор области

Этот дескриптор допускает локализацию областей внутри изображения или кадров путем спецификации их с помощью краткого и масштабируемого отображения боксов или многогранников.



Движение камеры


Этот дескриптор характеризует параметры перемещения 3-D камеры. Он базируется на информационных параметрах 3-D-перемещения камеры, которые могут быть автоматически получены.

Дескриптор движения камеры поддерживает следующие стандартные операции с камерой (см. рис. 11): фиксированное положение, панорамное движение (горизонтальное вращение), слежение за движущимся объектом (горизонтальное поперечное перемещение), вертикальное вращение, вертикальное поперечное перемещение, изменение фокусного расстояния, наезд (трансфокация вдоль оптической оси) и вращение вокруг оптической оси.

Рис. 11. Перемещения камеры

Отрывок, для которого все кадры характеризуются определенным типом перемещения камеры, относящееся к одному виду или нескольким, определяет базовые модули для дескриптора перемещения камеры. Каждый составляющий блок описывает начальный момент, длительность, скорость перемещения изображения и увеличение фокусного расстояния (FOE) (или сокращение фокусного расстояния - FOC). Дескриптор представляет объединение этих составляющих блоков, он имеет опцию описания смеси типов перемещения камеры. Смешанный режим воспринимает глобальную информацию о параметрах перемещения камеры, игнорируя детальные временные данные, путем совместного описания нескольких типов движения, даже если эти типы перемещения осуществляются одновременно. С другой стороны, несмешанный режим воспринимает понятие чистых перемещений и их совмещения на протяжении определенного временного интервала. Ситуации, когда одновременно реализуется несколько типов перемещений, описывается, как суперпозиция описаний чистых независимых типов перемещения. В этом режиме описания, временное окно конкретного элементарного сегмента может перекрываться с временным окном другого элементарного сегмента.



Двоичный формат описания сцены BIFS (Binary Format for Scene description)


Кроме обеспечения поддержки кодирования индивидуальных объектов, MPEG-4 предоставляет также возможность создать набор таких объектов в рамках сцены. Необходимая информация композиции образует описание сцены, которая кодируется и передается вместе с медиа-объектами. Начиная с VRML (Virtual reality Modeling Language), MPEG разработал двоичный язык описания сцены, названный BIFS. BIFS расшифровывается как BInary Format for Scenes.

Для того чтобы облегчить авторскую разработку, а также создание средств манипулирования и взаимодействия, описания сцены кодируются независимо от потоков, имеющих отношение в примитивным медиа-объектам. Специальные меры предпринимаются для идентификации параметров, относящихся к описанию сцены. Это делается путем дифференциации параметров, которые используются для улучшения эффективности кодирования объектов (например, векторы перемещения в алгоритмах видео-кодирования), а также те, которые используются в качестве модификаторов объекта (например, положение объекта на сцене). Так как MPEG-4 должен допускать модификацию последнего набора параметров без необходимости декодировать самих примитивных медиа-объектов, эти параметры помещаются в описание сцены, а не в примитивные медиа-объекты. Следующий список предлагает некоторые примеры информации, представленные в описании сцены.

Как объекты группируются. Сцена MPEG-4 следует иерархической структуре, которая может быть представлена как ориентированный граф без циклов. Каждый узел графа является медиа-объектом, как показано на рис. 8. Три структуры не обязательно являются статическими; атрибуты узла (например, позиционирующие параметры) могут быть изменены, в то время как узлы могут добавляться, замещаться, или удаляться.

Рис. 8. Возможная логическая структура сцены

Как объекты позиционируются в пространстве и времени. В модели MPEG-4, аудиовизуальные объекты имеют протяженность в пространстве и во времени. Каждый медиа-объект имеет локальную координатную систему. Локальная координатная система объекта является той, в которой объект имеет фиксированное пространственно-временное положение и шкалу.
Локальная координатная система служит в качестве указателя для манипулирования медиа-объектом в пространстве и во времени. Медиа-объекты позиционируются на сцене путем спецификации координатного преобразования из локальной координатной системы объекта в глобальную систему.

Выбор значения атрибута. Индивидуальные медиа-объекты и узлы описания сцены демонстрируют набор параметров композиционному слою через который может частично контролироваться их поведение. Среди примеров можно назвать понижение звука (pitch), цвет для синтетических объектов, активация или дезактивация информации улучшения для масштабируемого кодирования и т.д.

Другие преобразования медиа-объектов. Как упомянуто выше, структура описания сцены и семантика узла подвержены сильному влиянию VRML, включая его модель событий. Это предоставляет MPEG-4 очень богатый набор операторов конструирования сцены, включая графические примитивы, которые могут использоваться для построения сложных сцен.


-Форма


Рассматривая непрерывное развитие мультимедийных технологий, виртуальных миров, 3D-материал становится обычным для современных информационных систем. В большинстве случаев, 3D-информация представляется в виде сетки многоугольников. Группа MPEG-4, в рамках подгруппы SNHC, разрабатывала технологии для эффективного кодирования модели 3D-сеток. В стандарте MPEG-7 необходимы средства для интеллектуального доступа к 3D-информации. Главные приложения MPEG-7 имеют целью поиск, получение и просмотр баз 3D-данных.

Предлагаемый дескриптор 3D-формы имеет целью предоставление внутреннего описания формы сеточных 3D-моделей. Он использует некоторые локальные атрибуты 3D-поверхности.



Форма, базирующаяся на областях (Region-Based)


Форма объекта может состоять из одной области или набора областей, а также некоторых отверстий в объектах, как это показано на рис 9. Так как дескриптор формы, базирующейся на областях, использует все пиксели, определяющие форму в пределах кадра, он может описывать любую форму, то есть не только простые формы с односвязными областями, как на рис. 9 (a) и (b), но также сложные формы, которые содержат отверстия или несколько не соединенных областей, как показано на рис. 9 (c), (d) и (e), соответственно. Дескриптор формы, базирующейся на областях, может не только эффективно описать столь несхожие формы, но и минимизировать искажения на границах объекта.

На рис. 9 (g), (h) и (i) показаны очень схожие изображения чашки. Различия имеются только в форме ручки. Форма (g) имеет трещину на нижней части ручки, в то время как в (i) ручка не имеет отверстия. Дескриптор формы, базирующейся на областях, рассматривает (g) и (h) подобными, но отличными от (i), так как там ручка не имеет отверстия. Аналогично, на рис. 9(j-l) показана часть видео последовательности, где два диска постепенно разделяются. С точки зрения дескриптора формы, базирующейся на областях, эти картинки схожи.

Рис. 9. Примеры различной формы

Заметим, что черный пиксель в пределах объекта соответствует 1 на изображении, в то время как пиксели белого фона соответствуют 0.

Дескриптор характеризуется малым размером и быстрым временем поиска. Размер данных для представления является фиксированным и равным 17.5 байт.



Форма, основанная на контуре


Дескриптор формы, базирующейся на контуре, получает параметры формы объекта или его контур, извлеченный из описания областей. Он использует так называемое Curvature Scale-Space представление, которое воспринимает значимые параметры формы.

Дескриптор формы, базирующейся на контуре объекта, использует Curvature Scale Space представление контура. Это представление имеет несколько важных особенностей, в частности:

Оно извлекает очень хорошие характеристики формы, делая возможным поиск, основанный на сходстве.

Оно отражает свойства восприятия визуальной системы человека и предлагает хорошее обобщение.

Оно устойчиво при плавном движении.

Оно устойчиво при частичном перекрытии формы.

Оно устойчиво по отношению преобразованиям перспективы, которые являются следствием изменения параметров видеокамеры, и представляются общими для изображений и видео.

Оно компактно

Некоторые из выше перечисленных свойств проиллюстрированы на рис. 10, каждый кадр содержит весьма сходные с точки зрения CSS изображения, основанные на результате действительного поиска в базе данных MPEG-7.

Рис. 10.

На рис. 10 (a) продемонстрированы свойства обобщения формы (внешнее сходство различных форм), (b) устойчивость по отношению к плавному движению (бегущий человек), (c) устойчивость к частичному перекрытию (хвосты или ноги лошадей)



Формат файла MP4 сконструирован так,


Формат файла MP4 сконструирован так, чтобы информация MPEG-4 имела легко адаптируемый формат, который облегчает обмены, управление, редактирование и представление медиа-материала. Презентация может быть локальной по отношению к системе осуществляющей этот процесс, или осуществляемой через сеть или другой поточный механизм доставки (TransMux). Формат файлов сконструирован так, чтобы не зависеть от конкретного типа протокола доставки, и в тоже время эффективно поддерживать саму доставку. Конструкция основана формате QuickTime® компании Apple Computer Inc.

Формат файла MP4 сформирован из объектно-ориентированных структур, называемых атомами. Каждый атом идентифицируется тэгом и длиной. Большинство атомов описывают иерархию метаданных, несущих в себе такую информацию как индексные точки, длительности и указатели на медиа данные. Это собрание атомов содержится в атоме, называемом ‘кино атом’. Сами медиа-данные располагаются где-то; они могут быть в файле MP4, содержащемся в одном или более ‘mdat’, в медийных информационных атомах или размещаться вне файла MP4 с доступом через URL.

Мета данные в файле в сочетании с гибкой записью медийных данных в память позволяют формату MP4 поддерживать редактирование, локальное воспроизведение и обмен, и тем самым удовлетворять требованиям интермедиа MPEG4.


Функции, зависящие от содержимого (Content-Based)


Кодирование, учитывающее содержимое изображения и видео, позволяет разделить кодовое преобразование и реконструкцию видео-объектов произвольной формы.

Произвольный доступ к содержимому видео последовательности открывает возможность реализации функций пауза, быстрый переход вперед или назад для записанного видео-объектов.

Расширенное манипулирование видео последовательностями позволяет наложения естественный или синтетический текст, текстуры, изображения и видео. Примером может служить наложение текста на движущийся видео объект, когда текст движется синфазно с объектом.



Гибкая длительность


В среде с ненадежной доставкой может так случиться, что доставка определенного элементарного потока или частей потока, может заметно задержаться относительно требуемого времени воспроизведения.

Для того чтобы понизить чувствительность к задержке времени доставки, модель FlexTime основывается на так называемой метафоре "пружины", смотри раздел 4.2.3.

Следуя модели пружины, элементарные потоки, или фрагменты потоков, рассматриваются как пружины, каждый с тремя 3 ограничениями. Оптимальная длина (длительность воспроизведения потока) может рассматриваться как подсказка получателю, когда возможны варианты. Заметим, что при растяжении или сжатии длительности непрерывной среды, такой как видео, подразумевает соответствующее замедление или ускорение воспроизведения, когда элементарный поток состоит из статических картинок. В этом случае растяжение или сжатие предполагает удержание изображения на экране в течение большего или меньшего времени.



в себя средства, которые необходимы


Системы MPEG-7 будут включать в себя средства, которые необходимы для подготовки описаний MPEG-7 для эффективной транспортировки и запоминания, а также позволяют синхронизовать мультимедийный материал и описания и средства, сопряженные с управлением и защитой интеллектуальной собственности. Стандарт определяет архитектуру терминала и нормативных интерфейсов.


в декабре 1999. Существующие средства


Версия 2 была зафиксирована в декабре 1999. Существующие средства и профайлы из версии 1 в версии 2 не заменены; новые возможности будут добавлены в MPEG-4 в форме новых профайлов. Системный слой версии 2 обладает обратной совместимостью с версией 1.


Графические профайлы сцены


Графические профайлы сцены (или профайлы описания сцены), определенные в системной части стандарта, допускают аудио-визуальные сцены только аудио, 2-мерным, 3-мерным или смешанным 2-D/3-D содержимым.

Графический профайл аудио сцены предоставляется для набора графических элементов сцены BIFS для применение исключительно в аудио приложениях. Графический профайл аудио сцены поддерживает приложения типа широковещательного аудио.

Графический профайл простой 2-D сцены предоставляется только для графических элементов BIFS, которым необходимо разместить один или более аудио-визуальных объектов на сцене. Графический профайл простой 2-D сцены допускает презентации аудио-визуального материала, допускающий коррекцию, но без интерактивных возможностей. Графический профайл простой 2-D сцены поддерживает приложения типа широковещательного телевидения.

Графический профайл полной 2-D сцены предоставляется для всех элементов описания 2-D сцены средства BIFS. Он поддерживает такие возможности, как 2-D преобразования и alpha-сглаживание. Графический профайл полной 2-D сцены делает возможными 2-D приложения, которые требуют широкой интерактивности.

Графический профайл полной сцены предоставляет полный набор графических элементов сцены средства BIFS. Графический профайл полной 2-D сцены сделает возможными приложения типа динамического виртуального 3-D мира и игр.

Графический профайл 3D аудио сцены предоставляет средства трехмерного позиционирования звука в отношении с акустическими параметрами сцены или ее атрибутами, характеризующими восприятие. Пользователь может взаимодействовать со сценой путем изменения позиции источника звука, посредством изменения свойств помещения или перемещая место слушателя. Этот профайл предназначен для использования исключительно аудио-приложениями.



Идентификация времени


Для операции реального времени, модель синхронизации is assumed in which the end-to-end delay from the signal output from an encoder to the signal input to a decoder is constant. Более того, передаваемые потоки данных должны содержать времязадающую информацию в явном или неявном виде. Существует два типа временной информации. Первый тип используется для передачи частоты часов кодировщика, или временной шкалы, декодеру. Второй, состоящий из временных меток, присоединенных к закодированным AV данным, содержит желательное время декодирование для блоков доступа или композиции, а также время истечения применимости композиционных блоков. Эта информация передается в заголовках SL-пакетов сформированных в слое sync. С этой временной информацией, интервалы в пределах картинки и частота стробирования аудио может подстраиваться в декодере, чтобы соответствовать интервалам частоте стробирования на стороне кодировщика.

Различные медиа-объекты могут кодироваться кодировщиками с различными временными шкалами, и даже с небольшим отличием времязадающих частот. Всегда возможно установить соответствие между этими временными шкалами. В этом случае, однако, никакая реализация приемного терминала не может избежать случайного повторения или потери AV-данных, из-за временного наезда (относительное растяжение или сжатие временных шкал).

Хотя допускается работа систем без какой-либо временной информации, определение модели буферизации в этом случае невозможно.



Информация содержимого объекта


MPEG-4 позволяет подсоединять к объектам информацию об их материале. Пользователи стандарта могут использовать этот поток данных ‘OCI’ (Object Content Information) для передачи текстовой информации совместно с материалом MPEG-4.



Интеракция с пользователем


Наконец, последний набор DS MPEG-7 имеет отношение к взаимодействию с пользователем. DS взаимодействия с пользователем описывает предпочтения пользователя и историю использования мультимедийного материала. Это позволяет, например, найти соответствие между предпочтениями пользователя и описаниями аудио-визуального материала, для того чтобы облегчить индивидуальный доступ к аудио-визуальному материалу, презентации и пр.



IPR идентификация и защита


MPEG-4 предоставляет механизмы для защиты прав интеллектуальной собственности (IPR). Это достигается путем предоставления кодированных медиа-объектов с опционным набором данных идентификационной интеллектуальной собственности IPI (Intellectual Property Identification), несущим информацию о содержимом, типе содержимого и о владельцах прав на данный материал. Набор данных, если он имеется, является частью дескриптора элементарного потока, который описывает поточную информацию, ассоциированную с медиа-объектом. Номер набора данных, который ассоциируется с каждым медиа-объектом достаточно гибок; другие медиа-объекты могут использовать тот же набор. Предоставление наборов данных позволяет внедрить механизм отслеживания, мониторинга, выставления счетов и защиты от копирования.

Каждое широкодиапазонное приложение MPEG-4 имеет набор требований относящихся к защите информации, с которой оно работает. Эти приложения могут иметь разные требования по безопасности. Для некоторых приложений, пользователи обмениваются информацией, которая не имеет собственной ценности, но которая, тем не менее, должна быть защищена, чтобы защитить права собственности. Для других приложений, где управляемая информация для ее создателя или дистрибьютора имеет большую ценность, требуется управление более высокого уровня и более надежные механизмы защиты. Подразумевается, что дизайн структуры IPMP должен учитывать сложность стандарта MPEG-4 и разнообразие его применений. Эта структура IPMP оставляет детали системы IPMP на усмотрение разработчиков. Необходимые уровень и тип управления и защиты зависят от ценности материала, комплексности, и сложности, связанных с этим материалом бизнес моделей.

Данный подход позволяет конструировать и использовать системы IPMP специфичные для доменов (IPMP-S). В то время как MPEG-4 не стандартизует сами системы IPMP, он стандартизует интерфейс IPMP MPEG-4. Этот интерфейс состоит из IPMP-дескрипторов (IPMP-Ds) и элементарных потоков IPMP (IPMP-ES).

IPMP-Ds и IPMP-ESs предоставляют коммуникационный механизм взаимодействия систем IPMP и терминала MPEG-4. Определенные приложения могут требовать нескольких систем IPMP. Когда объекты MPEG-4 требуют управления и защиты, они имеют IPMP-D, ассоциированные с ними. Эти IPMP-Ds указывают на то, какие системы IPMP следует использовать и предоставляют информацию о том, как защищать получаемый материал. (Смотри рис. 9).

Кроме предоставления владельцам интеллектуальной собственности возможности управления и защиты их прав, MPEG-4 предлагает механизм идентификации этих прав с помощью набора данных IPI (Intellectual Property Identification Data Set). Эта информация может использоваться системами IPMP в качестве входного потока процесса управления и защиты.

Рис. 9. Интерфейсы IPMP в системе MPEG-4



Извлечение и приложения клиента


В рамках программного обеспечения XM, приложения соотносятся с одним конкретным дескриптором или схемой описания. Так как стандартизовано много дескрипторов и схем описания (DS), существует также много приложений интегрированных в программный пакет. Приложения, которые формируют дескриптор (D) или схему описания (DS), которые они тестируют, называются приложениями выборки. С другой стороны, приложения, которые используют тестируемые D или DS (DUT), называются приложениями клиента. Извлекающие приложения нужны, если D или DS являются дескриптором низкого уровня, это означает, что описание может быть извлечено из мультимедийного материала автоматически. Для D или DS высокого уровня выборка не может быть реализована аналогично. Однако в большинстве случаев выборка может быть основана на предварительной информации. Это означает, что процесс выборки читает эти дополнительные данные помимо медийного материала, чтобы получить описания. Таким образом, набор мультимедийного материала расширяется путем добавления входных данных высокого уровня.



язык описания определений DDL


Согласно определению в MPEG- 7 язык описания определений DDL (Description Definition Language) представляет собой:

“... язык, который позволяет формировать новые схемы описания и, возможно, дескрипторы. Он также позволяет расширение и модификацию существующих схем описания”.

В качестве основы DDL был выбран язык XML. Как следствие, DDL может быть поделен на следующие логические нормативные компоненты:

-Структурная схема языковых компонентов XML;
-Компоненты типа данных схемы;
-Специфические расширения MPEG-7.


Язык описания определений MPEG-(DDL)


Главными средствами, используемыми в описаниях MPEG-7 являются DDL (Description Definition Language), схемы описаний (DS) и дескрипторы (D). Дескрипторы связывают характеристики с набором их значений. Схемы описания являются моделями мультимедийных объектов и всего многообразия элементов, которые они представляют, например, модели данных описания. Они специфицируют типы дескрипторов, которые могут быть использованы в данном описании, и взаимоотношения между этими дескрипторами или между данными схемами описания.

DDL образует центральную часть стандарта MPEG-7. Он обеспечивает надежную описательную основу, с помощью которой пользователь может создать свои собственные схемы описания и дескрипторы. DDL определяет семантические правила выражения и комбинации схем описания и дескрипторов.

DDL не является языком моделирования, таким как UML (Unified Modeling Language), а языком схем для представления результатов моделирования аудио-визуальных данных, например, DS и D.

DDL должен удовлетворять требованиям MPEG-7 DDL. Он должен быть способен выражать пространственные, временные, структурные и концептуальные взаимоотношения между элементами DS и между DS. Он должен предоставить универсальную модель для связей и ссылок между одним или более описаниями и данными, которые им описываются. Кроме того, язык не должен зависеть от платформы и приложения и быть читаемым как машиной, так и человеком. MPEG-7 должен базироваться на синтаксисе XML. Необходима также система разборки DDL (парсинга), которая должна быть способна проверять схемы описания (материал и структуру) и дескрипторы типа данных, как примитивные (целые, текст, дата, время) так и составные (гистограммы, нумерованные типы).



и произвольной формы. Введены две


Стандарт MPEG-4 V.2 улучшает оценку перемещения и компенсации для объектов и текстур прямоугольной и произвольной формы. Введены две методики для оценки и компенсации перемещения:

• Глобальная компенсация перемещения GMC (Global Motion Compensation). Кодирование глобального перемещения для объекта, использующего малое число параметров. GMC основано на глобальной оценке перемещения, деформации изображения, кодировании траектории перемещения и кодировании текстуры для ошибок предсказания.

• Четверть-пиксельная компенсация перемещения улучшает точность схемы компенсации, за счет лишь небольшого синтаксической и вычислительной избыточности. Точное описание перемещения приводит к малым ошибкам предсказания и, следовательно, лучшему визуальному качеству.

В области текстурного кодирования DCT (SA-DCT – адаптивный к форме) улучшает эффективность кодирования объектов произвольной формы. Алгоритм SA-DCT основан на предварительно определенных ортонормальных наборах одномерных базисных функций DCT.

Субъективные оценочные тесты показывают, что комбинация этих методик может дать экономию в необходимой полосе канала до 50% по сравнению с версией 1, в зависимости от типа содержимого и потока данных.


Эффективность сжатия


Эффективное сжатие видео будет поддерживаться для всех скоростей обмена. Сюда входит компактное кодирование текстур с качеством, регулируемым от уровня “приемлемо” (для высоких сжатий данных) вплоть до “практически без потерь”.

Эффективное сжатие текстур для 2-D и 3-D сеток.

Произвольный доступ к видео, обеспечивающий такие функции как пауза, быстрый переход вперед или назад для записанного видео.



Эталонные программы: экспериментальная модель Цели


Программы XM являются основой для эталонных кодов стандарта MPEG-7. Они используют нормативные компоненты MPEG-7:

Дескрипторы (D),Схемы описания (DS),Схемы кодирования (Cs),Язык описания определений DDL (description definition language) Компоненты систем BiM.



Эталонные программы MPEG- модель экспериментов (eXperimentation Model)


Программное обеспечение модели XM (eXperimentation Model) представляет собой систему моделирования для дескрипторов MPEG-7 (D), схем описания (DS), схем кодирования (CS), языка описания определений (DDL). Кроме нормативных компонентов, системе моделирования необходимы некоторые дополнительные элементы, существенные при исполнении некоторых процедурных программ. Структуры данных и процедурные программы образуют приложения. Приложения XM образуют две разновидности: приложения клиента и сервера.